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Abstract This paper considers the problem of finding as many as possible, hopefully
all, solutions of the general (i.e., not necessarily monotone) variational inequality
problem (VIP). Based on global optimization reformulation of VIP, we propose a
hybrid evolutionary algorithm that incorporates local search in promising regions. In
order to prevent searching process from returning to the already detected global or
local solutions, we employ the tunneling and hump-tunneling function techniques.
The proposed algorithm is tested on a set of test problems in the MCPLIB library and
numerical results indicate that it works well in practice.

Keywords Variational inequality · Global optimization · Evolutionary algorithm ·
Local search · Tunneling function

1 Introduction

Let X be a nonempty closed convex set in Rn and F : Rn → Rn be a continuously
differentiable mapping. The variational inequality problem (VIP) is to find a vector
x∗ ∈ X such that

F(x∗)T(x − x∗) ≥ 0, ∀x ∈ X. (1.1)

This problem is denoted VIP(X, F) and has a large number of important applications.
We refer the interested reader to the two volume book by Facchinei and Pang [3].

Theoretical aspects of the VIP have been studied well and many algorithms, such as
projection methods, interior and smoothing methods and equation reduction methods,
have been proposed to solve it [3,4]. A popular idea adopted by recent algorithms is to
reformulate the VIP as a system of equations or an optimization problem. However,
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the validity and efficiency of those algorithms often depend on the monotonicity-like
assumption on the mapping F.

Although some algorithms have been proposed for solving general (not necessarily
monotone) VIPs [1,8–10,14,15,17], they are primarily designed to solve the partic-
ular VIP(X, F) in which the constraint set X is the nonnegative orthant Rn+. This
special problem, VIP(Rn+, F), is called the nonlinear complementarity problem, and is
denoted NCP(F). Moreover, most of the existing algorithms aim at finding a solution
of this problem. In practice, however, it is desirable to find all, or as many as possible,
solutions of the problem.

In this paper, we propose a global optimization-based method for finding as many
as possible, hopefully all, solutions of the general VIP. To achieve this, we first use
an optimization reformulation of VIP (1.1) based either on a merit function or on
its KKT system. In either case, the VIP (1.1) is reformulated as the following box
constrained optimization problem with zero global minimum value [3,4]:

min f (x) s.t. x ∈ D, (1.2)

where f is a real-valued function and the set D is defined as D = {x ∈ Rn| l ≤ x ≤ u}.
Here l, u ∈ Rn ∪ {±∞} are, possibly infinite, lower and upper bounds on the variable.

In order to find all global solutions of problem (1.2), we propose a population-
based hybrid evolutionary algorithm (HEA) that incorporates local search in prom-
ising regions. The proposed method tries to keep and improve diversity of good trial
points in the population set while searching for global minimizers of the objective
function. Moreover, every time a global or local solution, or an unpromising trial
point is detected by the HEA, the objective function of the problem is locally mod-
ified around this point to prevent the searching process from returning back to the
vicinity of this solution again. Actually, the proposed HEA invokes some known strat-
egies of hybrid metaheuristics [11,16,18] with some modifications to fit the general
VIP.

The tunneling function method for finding a global minimum of a nonconvex func-
tion was first introduced in [13]. The main idea of this method is that every time a
local solution is detected in computation, it tries to construct a new objective function
which has the same global minima as the original function but the detected local
minimum is no longer a local minimum for the new function. The new function is
treated as the objective function in the next search stage, and this process is repeated
until a global solution is found. Another idea to escape from a detected local mini-
mum, called the filled function method, is proposed in [5,19]. Instead of constructing
a tunnel at a detected local minimum, it considers a new objective function which has
a local maximum at the detected local solution and has no stationary point at local
solutions worse (having greater original objective function value) than the detected
one. Both tunneling and filled function techniques are applied to the general nonlinear
complementarity problem in [8], where a semi-smooth Newton method is presented.

In our method, the tunneling function technique is used not only for escaping
from the detected local minimum, but also and more importantly for escaping from
a detected global minimum and its basin to search for other global minimizers. How-
ever, the direct use of the tunneling function technique at a detected global minimum
can be effective only if it is an exact solution of the problem. In practice, we can only
expect to find approximations of global minima. To cope with this difficulty, before
using the tunneling modification at a detected approximate global minimum, we sug-
gest first to use another modification of the objective function, which is called a hump
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function and helps capture the exact global minimum near the detected approximate
solution, and then construct a hump-tunneling function to which the HEA is applied.

The global optimal value of problem (1.2) is known to be zero. The proposed
method HEA exploits this fact in two ways. First, it helps the HEA to determine
whether a solution is global or not. Second and more importantly, if a modified objec-
tive function (either by a tunneling or by a hump-tunneling function) has at least one
common global minimum with the original objective function, it must also have the
zero global minimum value, i.e., the global minimum value of the objective functions
will remain the same during the computation except when there are no other common
global minimizers.

The organization of this paper is as follows: In Sect. 2, we first give a review of
merit functions and global optimization reformulations of VIP. In Sect. 3, we describe
the HEA and its elements in detail. The basic ideas behind the tunneling and hump
function techniques are also contained in this section. We then present numerical
results in Sect. 4 and conclude the paper in Sect. 5.

2 Global optimization formulations of VIP

Consider the VIP, which is to find a vector x∗ ∈ D such that

F(x∗)T(x − x∗) ≥ 0, ∀x ∈ D.

Definition A merit function for the VIP is a nonnegative function θ : D → R+ such
that x∗ is a solution of the VIP if and only if x∗ ∈ D and θ(x∗) = 0. That is, the
solutions of the VIP coincide with the global optimal solutions of the problem

min θ(x) s.t. x ∈ D, (2.1)

whose optimal objective value is zero.

There are some well known merit functions for VIP [3,4].

1. Gap function:

θgap(x) = max
y∈D

F(x)T(x − y).

2. Natural residual function:

θNR(x) = ‖x − �D(x − F(x))‖,

where �D(z) := argmin
y∈D

‖z − y‖ denotes the projection of point z on D.

3. Regularized gap function:

θreg(x) = max
y∈D

(
F(x)T(x − y) − 1

2‖x − y‖2
)

= F(x)T(x − �D(x − F(x))) − 1
2‖x − �D(x − F(x))‖2. (2.2)

The first two merit functions are generally nondifferentiable, while the third one is a
continuously differentiable function.
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Another way to define VIP as a global optimization problem with zero global
minimum value is to use its KKT system. Consider the following VIP: find x∗ ∈ D̃
such that

F(x∗)T(x − x∗) ≥ 0, ∀x ∈ D̃ := {x ∈ Rn| h(x) = 0, g(x) ≤ 0}, (2.3)

where h : Rn → Rm1 and g : Rn → Rm2 are an affine function and a continuously
differentiable convex function, respectively. Although, we can directly use one of
merit function formulations of problem (2.3) as described earlier, computing them
with the set D̃ would be rather expensive in general. The KKT system of problem
(2.3) is given by

F(x) + ∇h(x)µ + ∇g(x)λ = 0,

h(x) = 0, (2.4)

g(x) ≤ 0, λ ≥ 0, λTg(x) = 0,

which is a mixed complementarity system. It has been shown [3] that, under some con-
straint qualification for D̃, the solutions of problem (2.3) coincide with the solutions
of the KKT system (2.4). It is not difficult to see that the system (2.4) is equivalent to
some box constrained VIP, so we can use a merit function formulation for that VIP
and have a global optimization problem with zero global minimum value.

3 Hybrid evolutionary algorithm

A genetic or evolutionary algorithm applies the principles of evolutionary process
observed in nature for finding a solution of a problem [2,6]. An evolutionary algo-
rithm for optimization is different from classical optimization methods in several
aspects:

(1) It relies on random sampling. This makes it a nondeterministic method, for which
there is no theoretical guarantee to find an optimal solution.

(2) While classical optimization methods maintain a single best solution found so far,
an evolutionary algorithm maintains a population of candidate solutions. Only
a few of these are best, but the other members of the population set are trial
points in other regions of the search space, where a better solution may later be
found. The use of population sets helps the evolutionary algorithm avoid being
trapped at a local optimum.

(3) Inspired by the role of reproduction and mutation processes in the evolution of
living things, an evolutionary algorithm tries to combine and change elements
of existing solutions in order to create a new solution, with some of the features
of parents. The elements of existing solutions are combined in a crossover oper-
ation. Moreover, random changes or mutations are made periodically for some
members of the current population, thereby yielding a new candidate solution.
There are many possible ways to perform crossover and mutation operations
[7].

(4) An evolutionary algorithm performs a selection process in which the most fit
members of the population survive, and the least fit members are eliminated. This
process guides the population in an evolutionary algorithm toward ever-better
solutions.
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A drawback of any evolutionary algorithm is that a solution is judged better only
in comparison to currently known other solutions; such an algorithm actually has no
reasonable way to test whether a solution is, even local, optimal. This drawback will
disappear when the minimum objective value is known, and the global optimization
problem considered in this paper precisely meets this requirement.

Now we describe our hybrid evolutionary algorithm HEA for the following opti-
mization problem with zero global minimum value:

min f (x) s.t. x ∈ D, (3.1)

where the constraint set is defined as D: = {x ∈ Rn| l ≤ x ≤ u} with l, u ∈ Rn ∪ {±∞}.
Assume that f is continuously differentiable. Our purpose is to design an evolutionary
algorithm which is able to find as many solutions as possible of problem (3.1).

If x∗ is a solution (global or local) of problem (3.1), then it must satisfy the following
optimality condition:

∇f (x∗)T(x − x∗) ≥ 0, ∀x ∈ D. (3.2)

We can rewrite the condition (3.2) as

gi(x) := ∂f (x)

∂xi

⎧⎨
⎩

≥ 0, if xi = li,
= 0, if li < xi < ui,
≤ 0, if xi = ui.

i = 1, . . . , n,

Let us define the index sets

Aε
1(x) = {i| li ≤ xi ≤ li + ε}, Aε

2(x) = {i| li + ε < xi < ui − ε},
Aε

3(x) = {i| ui − ε ≤ xi ≤ ui}
and the function

errε(x) =
∑

i∈Aε
1(x)

|min{gi(x), 0}| +
∑

i∈Aε
2(x)

|gi(x)| +
∑

i∈Aε
3(x)

max{gi(x), 0},

which is defined on the set D. It is not difficult to see that if x∗ is a solution (global
or local) of problem (3.1), then for sufficiently small ε > 0 the value of the function
errε(x) at the point x∗ is zero, i.e., errε(x∗) = 0.

In order to search for many global solutions simultaneously, the proposed evolu-
tionary algorithm first tries to keep diversity in the population set. Due to the rules
of accepting a newly produced trial solution to survive in the population set, most
evolutionary algorithms have the tendency that population sets eventually cluster
around only a few solutions. This is because, in ordinary evolutionary algorithms, a
new trial solution is usually accepted to survive and replace some solution in the pop-
ulation set, if it is better than that. Although some algorithms such as scatter search
method [11,12] try to keep diversity, the number of different good points in the pop-
ulation set is still small (even if the objective function has many global solutions) and
the remaining points are usually just diversity points. The HEA uses the Population
Update Rules (see Sect. 3.1), which are novel types of criteria for accepting new trial
solutions to survive in the population set, and tries to keep diversity while searching
for promising points.

The HEA collects the detected global or local solutions, or unpromising trial points
in the set S of modification points. Once one of those points is detected, the HEA
adds it to S and modifies the objective function around this point in order to avoid
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returning to it again in further search. We employ tunneling or hump-tunneling func-
tion modification (see Sect. 3.2) with detected solutions to construct new objective
functions, which have the same minimum points as the original objective function
except those solutions already detected. Moreover, to achieve faster convergence, we
apply a local optimization method starting from the best points in the population set.
Although, we use modified objective functions in the evolutionary search, we always
use the original objective function in the local search.

To terminate the HEA, we use the following three different criteria.

(1) The number of function evaluations exceeds the pre-defined limit.
(2) The number of detected global solutions exceeds the pre-defined number.
(3) Let Ns be a pre-specified positive integer. If the most recently added Ns ele-

ments of the set S of modification points were not new global solutions, then we
terminate the main algorithm.

The main loop of the proposed algorithm is stated as follows. Explanation of its
components will be given later in detail.

HEA Algorithm

1. Initialization: Choose a population size M and fix parameters m, ls, Ns, Nk, β, ε1,
ε2, ε3 > 0.
Initialize the set of modification points as S := ∅ and set the current objective
function

fc(x) := f (x).

Use the Diversification Generation Method to construct an initial population
set P. Evaluate the trial points in P and order them according to their current
objective function values so that x1 is the best solution and xM is the worst, i.e.,

fc(x1) ≤ fc(x2) ≤ · · · ≤ fc(xM).

Set the generation counter t := 1.

2. Parents pool generation: Generate a parents pool P′, which consists of all different
pairs of the population set P.

3. Crossover and mutation: Select a pair (p1, p2) from P′. Apply the Crossover and
Mutation Procedure to the pair (p1, p2) to obtain two new solutions c1, c2.

4. Population update: Using the Population Update Rule with c1 and c2, update the
population set P. Delete the pair (p1, p2) from the parents pool P′. If P′ = ∅, then
go to Step 5; otherwise go to Step 3.

5. Modification of the objective function: If for some x̄ ∈ P,

f (x̄) ≤ ε1 (global solution), or

errε3(x̄) ≤ ε2 (stationary point),

then add x̄ to the set S of modification points. Applying the procedure Modifi-
cation of the Objective Function to the current objective function fc(x) with the
point x̄, reconstruct the objective function fc(x). Use the Diversification Genera-
tion Method to produce M new trial points and add them to the population set
P. Reorder the elements in the set P according to their new objective function
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values and redefine the population set P as the best M elements in it. Continue
with the new objective function fc(x) and population set P.

6. Stopping condition: If one of the stopping conditions holds, then terminate the
algorithm and refine the global solutions in S by some local search method. Oth-
erwise, set t := t + 1 and go to Step 7.

7. Intensification: If the best solution in the population set P has not been improved
enough, i.e., the objective value has not been decreased by a pre-specified fraction
β ∈ (0, 1) in the last Nk steps, then apply the local search method with ls steps to
the original objective function f (x) starting from the best m elements of the set
P. Delete the points used as starting points in local search from the set P and add
m points produced by Diversification Generation Method to the set P. After the
local search steps are taken, compare the values of the current objective function
fc(x) at each pair of the starting point and the newly found point.

If the value at the newly found point is greater, then go to Step 7.1. Otherwise, go
to Step 7.2.
7.1. We regard the starting point as an unpromising trial point and add it to the set S of
modification points. Applying the procedure Modification of the Objective Function
to the current objective function fc(x) with the starting point, reconstruct the objective
function fc(x) and reorder the elements in the population set P according to their new
objective function values. Go to Step 2.
7.2. Using the Population Update Rule, update the population set P with the newly
found points. Go to Step 2.

Now we elaborate the procedures used in the HEA.

Diversification generation method. The purpose of the diversification generation [11]
is to generate a well distributed set of trial solutions. The basic Diversification Gen-
eration method uses controlled randomization and frequency memory to generate
a set of diverse solutions. This can be accomplished by dividing the range [li, ui] of
each variable into four sub-ranges of equal size. Then, a solution is constructed in two
steps. First a subrange is randomly selected. The probability of selecting a subrange
is determined to be inversely proportional to its frequency count. Then a value is
randomly generated within the selected subrange.

Crossover and mutation procedure. The purpose of crossover is to produce children
who are expected to possess better properties than their parents. Good results can be
obtained with a random matching of the individuals [2,6]. Some well known crossovers
are the following [7].

Single-point crossover: One crossover position (coordinate) in the vector of vari-
ables (genes) is randomly selected and the variables situated after this point are
exchanged between individuals, thus producing two offsprings.

Multi-point crossover: Some crossover positions are chosen, and then the variables
between successive crossover points are exchanged among the two parents to produce
new offsprings.

Intermediate recombination: The values of the offspring variables are chosen from
the values of the parents variables according to some rule.

Although we could use various types of existing crossovers, we propose another cross-
over which may hopefully be more appropriate to our problem. We use the well known
fact [3] that
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x solves the VIP(F, D) ⇐⇒ x = �D(x − F(x)),

where �D(z) := argmin
y∈D

‖z − y‖ is the projection of point z on D. If we denote the

mapping H(x) := �D(x − F(x)), then we have

‖x − �D(x − F(x))‖ = ‖x − H(x)‖ =
√√√√

n∑
i=1

(xi − Hi(x))2.

Here Hi(x) is ith component of the vector H(x). According to this formula, we may
tell to some extent the quality of the gene xi, that is, the smaller the value |xi − Hi(x)|,
the better the gene. In particular, the equalities xi−Hi(x) = 0, i = 1, . . . , n, hold at any
solution of the VIP. Taking into account these properties, we propose the following
crossover and mutation.

Let (p1, p2) be a pair of solutions used to produce new trial solutions.
Crossover: Let p̄ denote the vector whose coordinates are given by

p̄j :=
{

p1
j , if |p1

j − Hj(p1)| ≤ |p2
j − Hj(p2)|,

p2
j , otherwise,

j = 1, . . . , n.

Choose random numbers r1, r2 from the interval [0, 1]. Define two new trial solutions
as follows:
If p̄ �= p1 or p̄ �= p2, then

ci := pi + ri(p̄ − pi), i = 1, 2.

Otherwise,

c1 := p1 + r1(p
2 − p1), c2 :=

{
�D(p1 − r2(p2 − p1)), if p̄ = p1,
�D(p2 − r2(p1 − p2)), if p̄ = p2.

Mutation: Choose random numbers r1, r2 from the interval [0, 1]. Define two new
trial solutions as follows:

ci := pi + ri(H(pi) − pi), i = 1, 2.

In the HEA, we use the above Crossover and Mutation in addition to the multi-point
crossover to generate the children.

3.1 Population update rule

As we mentioned earlier, most evolutionary algorithms have the property that their
population sets tend to cluster around only a few global solutions. Here we pro-
pose two different techniques to update the population set, which are aimed to keep
diversity while searching for global solutions. The first one is somewhat heuristic and
depends on the structure of the population set. The second one is based on some
tolerance parameter for the distance between trial points.

Population Update Rule 1: Consider a set of points X = {x1, x2, . . . , xM} sorted accord-
ing to their objective function values. Let x be a trial solution used to update the
population set.
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1. If f (x) ≥ f (xM), i.e., x is worse than the worst element in X, then discard x.
2. If f (x) ≤ f (x1), i.e., x is better than the best element in X, then add x to X and

delete the closest point to x in X.

3. If f (xi) ≤ f (x) < f (xi+1), then let

k := argmin
1≤j≤i

‖x − xj‖, l := argmin
i+1≤j≤M

‖x − xj‖.

Namely, xk is the closest point to x among such points in X that their objective function
values are smaller than f (x), while xl is the closest point to x among such points in X
that their objective function values are greater than f (x).
If ‖x − xk‖ ≤ ‖xk − xl‖, then discard x.
If ‖x − xk‖ > ‖xk − xl‖ and ‖x − xl‖ ≤ ‖xk − xl‖, then delete xl from X and add x to
X in the (i + 1)-th position.
Otherwise, delete xM from X and add x to X in the (i + 1)th position.

Population Update Rule 2: Let X = {x1, x2, . . . , xM} be a set of points sorted according
to their function values, and εD > 0 be a fixed tolerance for the distance. Let x be a
trial solution. Define

B(x, ε) := {y ∈ Rn| ‖x − y‖ < ε}, k(i) := argmin
1≤j≤i

‖x − xj‖.

1. If f (x) ≤ f (x1), then add x to the set X and delete from X all the points xj satisfying
xj ∈ B(x, εD). If there is no such element in X, then delete xM from X. If there
are many, add new trial solutions generated by using Diversification Generation
Method to X to keep the size of the population set P equal to M.

2. If f (xi) < f (x) ≤ f (xi+1), then do the following:
If x ∈ B(xk(i), εD), then discard x. Otherwise, add the point x to X, and delete all
the elements xj, j = i + 1, . . . , M of X satisfying xj ∈ B(x, εD). If there is no such
element in X, then delete xM from X. If there are many, add new trial solutions
generated by using Diversification Generation Method to X to keep the size of
the population set P equal to M.

If εD = 0, then the Population Update Rule 2 will coincide with the ordinary update
rule used in the genetic algorithm that accepts a child to survive if it is better than an
element in the population.

3.2 Modification of the objective function

Let fc(x) be the current objective function used in the HEA and x̄ be a point around
which the function fc(x) is to be modified. Depending on the type of point x̄, we use
two different modifications. Recall that we can recognize whether x̄ is a global solution
or not, since we know that the global minimum value is zero.

Suppose first that x̄ is not a global solution. According to the HEA, x̄ must then
be either a local solution or an unpromising trial point which lies in the basin of some
detected solution. To avoid inefficient search around it in the next search stage, we
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use a new objective function which is constructed from the current objective function
by augmenting the function value around x̄.

Tunneling function: Consider the following function:

ft(x, x̄) := fc(x) · exp
(

1
‖x − x̄‖2

)
. (3.3)

This function is called a tunneling function because of its behavior around the point
x̄. For the sake of computational convenience, instead of directly using the function
ft(x, x̄), we use the following approximation of this function:

f̄t(x, x̄) := fc(x) · exp
(

1

εt + 1
ρ2

t
‖x − x̄‖2

)
, (3.4)

where εt and ρt are positive parameters that control the degree and the range of
modification. Since x̄ is not a global minimum and the objective function value is zero
at any global minimum, the modified function f̄t(x, x̄) has the same global minima as
the function fc(x) has.

Now let x̄ be an isolated global minimum of fc(x). Our purpose is to construct a new
objective function which has the same global minimizers as the objective function fc(x)

has, except x̄. Moreover, we require the new function to have no solution around x̄. In
principle, we may use the tunneling function (3.3). If x̄ is an exact global solution, i.e.,
fc(x̄) = 0, then under mild condition the function ft(x, x̄) can satisfy our requirements.
But, if x̄ is just an approximation of a global solution x̄∗, as one may expect in practice,
then it may not be appropriate to use the tunneling function modification ft(x, x̄),
because the exact solution x̄∗ still satisfies ft(x̄∗, x̄) = 0 unexpectedly (see Fig. 1).

Below we propose a possible remedy to overcome the above-mentioned drawback
of the tunneling function method.

Hump-tunneling function: Consider first the following modified function:

fh(x, x̄) := fc(x) + αhmax
{

0, 1 − 1

ρ2
h

‖x − x̄‖2
}

, (3.5)

where αh, ρh > 0 are some parameters. We call this function the hump function and
this function may enable us to escape from the region around x̄ even when x̄ is an
approximation of a global solution. However, it is not clear how we can determine the
parameter ρh appropriately. If we set it smaller than necessary, the modified function
may not be very useful because of a narrow range of modification, and if we set it

(a) (b)

Fig. 1 Graphs of a function (a) and its tunneling modification at an approximate solution x̄1 (b)
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large, it may affect some other global solutions near x̄, if any, and may make them
nonglobal solutions any more (see Fig. 2a). Although it is not very appropriate to use
either tunneling or hump function method individually, it may be effective to use a
combination of these two functions.

We first take a sufficiently small positive scalar ρ̄h and define a hump function
fh(x, x̄) as in (3.5). Then we construct the following function:

f̄ht(x, x̄) := fh(x, x̄) · exp
( 1

εt + 1
ρ2

t
‖x − x̄‖2

)

=
(

fc(x) + αhmax
{

0, 1 − 1

ρ̄2
h

‖x − x̄‖2
})

· exp
(

1

εt+ 1
ρ2

t
‖x− x̄‖2

)
. (3.6)

We call this function the hump-tunneling function and zero points of this function
coincide with those of the function fc(x) except for those zeros in B(x̄, ρ̄h). Choosing
ρ̄h small enough, we can avoid affecting other global solutions near x̄ (see Fig. 2b).

4 Numerical experiments

The performance of the HEA was tested on a number of well known test problems
in the MCPLIB library. To show the efficiency of the HEA we have used only those
problems which have multiple solutions, and for each problem we made 20 trials with
different initial populations. The programming code for the algorithm was written in
MATLAB and run on a computer Pentium 4, Microprocessor.

The merit function (2.2) is used to reformulate MCPLIB test problems as opti-
mization problems, and for local search in the HEA, we employ MATLAB’s com-
mand fmincon combined with an active set detecting strategy. Moreover, the HEA
is supposed to use a finite box for generating diversity points in the Diversification
Generation Method, whereas most of the test problems are mixed complementarity
problems which have no lower or upper bound. To deal with such problems, we use
a fixed finite box defined inside the original box in the Diversification Generation
Method, while using the original box constraint in the Crossover Mutation Procedure
and in the local search.

In general, it is difficult to universally determine suitable values of HEA param-
eters for every problem, because they are highly problem dependent. Nevertheless,

(a) (b)

Fig. 2 Graphs of a hump function (a) and a hump-tunneling function (b) constructed through
modification at an approximate solution x̄2 of the function of Fig. 1a
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Table 1 Parameter settings

Parameters Definition Value

M Number of elements in population min{2n + 4, 20}
m Number of best points for which local search is used 2
ls Maximum number of steps per local search min{2n, 30}
Nk, β Parameters controlling local search in HEA 3, 0.999
ε1, ε2, ε3 Tolerance parameters for the objective function in HEA 10−6, 10−6, 10−3

Nmax Maximum number of ineffective local transformations 10
Ngmax Maximum number of global solutions to be found 20
NFmax Maximum number of function evaluations 5n104

εD Distance tolerance used in population update rule 2 n/5
εt, ρt Tunneling parameters used in (3.4) and (3.6) 0.1, 2
αh, ρh Humping parameters used in (3.6) 1, 0.3

Table 2 Numerical results for the HEA with Population Update Rule 1

Problem n Kmin Kav Kmax Ngen Nloc NF Nf

badfree 5 20 20 20 31 14 3260 3260
games 16 20 20 20 74 432 32859 32859
kojshin 4 2 2 2 38 115 4023 1474
mathinum 3 1 14.4 20 255 858 30402 23066
mathisum 4 1 1.9 2 52 184 6751 2974
ne-hard 3 2 3.1 4 185 956 31223 16068
powell 16 4 11.4 20 96 1644 45740 36676
powell_mcp 8 2 5.1 9 110 1109 24585 10553
scarfasum 14 2 2.7 3 80 1157 45508 25139
sppe 27 20 20 20 325 471 138475 138475

through testing many times on various test problems, we suggest possible choices of
the parameters as shown in Table 1.

We have two versions of the HEA; HEA1 and HEA2 that use Population Update
Rules 1 and 2, respectively. We ran the HEA versions for all the chosen test prob-
lems with the general parameter settings mentioned in Table 1 and put the numerical
results in Tables 2 and 3. The columns in these tables have the following meanings:

Problem Name of the test problem
n Dimension of the test problem
Kmin, Kav, Kmax Minimum, average, maximum numbers of solutions found

by the Algorithm
Ngen Average number of generations
Nloc Average number of local steps taken
NF Average number of function evaluations
Nf Average number of function evaluations when the last

global solution is obtained

The results reported in Tables 2 and 3 show that the HEA is promising. For most
of test problems, the average numbers of obtained global solutions (Kav) are close
to the maximum numbers of obtained global solutions (Kmax), and this implies that
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Table 3 Numerical results for the HEA with Population Update Rule 2

Problem n Kmin Kav Kmax Ngen Nloc NF Nf

badfree 5 20 20 20 15 0 2946 2946
games 16 20 20 20 31 132 25529 25529
kojshin 4 2 2 2 28 92 5786 1986
mathinum 3 0 4.3 20 794 1008 132280 41290
mathisum 4 1 1.95 2 48 95 9299 2728
ne-hard 3 2 3.3 4 82 261 17930 10746
powell 16 5 14 20 71 1160 49965 34619
powell_mcp 8 3 6.9 11 107 1123 32349 12887
scarfasum 14 1 1.6 3 49 714 55479 22456
sppe 27 20 20 20 225 1563 260650 260650

the HEA versions are capable of finding multiple solutions. Moreover, the average
numbers of generations are reasonable compared with the problem dimensions and
the numbers of obtained global solutions. The HEA versions use three different stop-
ping conditions. Specifically, if the number of global solutions or that of ineffective
transformations (i.e., the number of subsequently detected local solutions or unprom-
ising trial points) or that of function evaluations exceeds their respective pre-specified
limits Ngmax, Nmax, NFmax, then the algorithm is terminated. We observe in both tables
that the HEA versions find global solutions in a relatively small number of function
evaluations (Nf), and after that, the algorithms were still running until one of the
termination conditions is met in order to check whether there are any other solution
left or not.

Table 2 reveals that the HEA1 finds no less than Ngmax (= 20) global solutions
for five test problems. In fact, we may conclude that these problems have infinitely
many solutions, and by setting Ngmax bigger, it is possible to find as many solutions as
one may want. For the other five problems, the algorithm was terminated because the
number of ineffective local transformations exceeded Nmax(= 10).

Table 3 shows that, the performance of the HEA2 is promising except for problem
mathinum, for which it occasionally failed to find a global solution despite the fact
that this problem has at least 20 solutions as shown in Tables 2 and 3. It happened
because the number of ineffective local transformations reached its limit Nmax(= 10)

before finding a global solution. By increasing Nmax, we could improve the perfor-
mance of the HEA2 for this problem. Another possible reason for the unexpected
performance of the HEA2 for problem mathinum is the choice of parameter εD. As
we mentioned earlier in Sect. 3.1, the Population Update Rule 2 is an extension of the
standard genetic algorithm selection mechanism and it tries to prevent the population
from prematurely converging to one or only a few points. However, we found that the
choice ε = n/5 was not appropriate for problem mathinum, since the HEA2 could
not escape from the undesirable property that the population converges to only a few
points. We have observed that, by increasing εD, we could improve the performance
of the HEA2 for this problem.

Finally, we make some remarks on the comparison between the results shown in
Tables 2 and 3 in terms of the numbers of obtained global solutions and computational
costs. Generally, the HEA versions are neutral in terms of the numbers of obtained
global solutions, since these numbers are almost the same for six problems out of
ten. For problems powell and powell_mcp, the HEA2 was able to find more global



650 J Glob Optim (2007) 38:637–651

solutions than the HEA1. However, for problems mathinum and scarfasum, the HEA1
performed better than the HEA2 in terms of the numbers of obtained global solutions
and the numbers of function evaluations. On the other hand, the HEA2 did not use
local search in all runs for problem badfree, while the HEA1 required more local
search steps than the HEA2 for seven out of ten problems.

5 Conclusions

In this paper, we have presented a new population-based algorithm HEA that is
designed to find as many solutions as possible of the general VIP. New types of popu-
lation update schemes in the evolutionary algorithm and a hump-tunneling technique
for escaping from detected solutions have also been proposed. The computational
results for some well known test problems show that the HEA method is capable
of locating many solutions in an acceptable number of function evaluations. More-
over, the numerical results indicate that, the more solutions a problem has, the better
the HEA method works. Finally, it is worth mentioning that one can use the HEA
for finding solutions of a system of equations or a global optimization problem with
known minimum objective value.
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